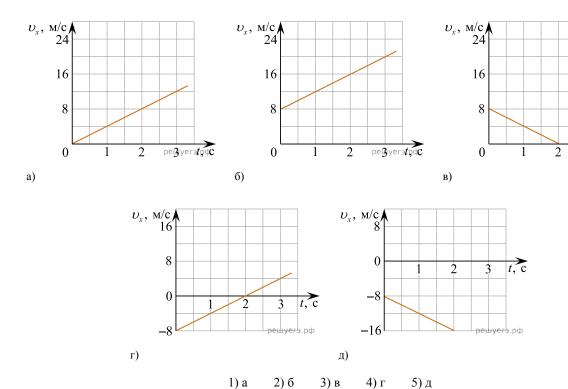
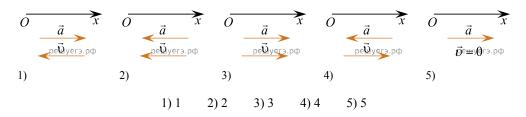

При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно. Ответ с погрешностью вида $(1,4\pm0,2)$ Н записывайте следующим образом: 1,40,2.

Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.

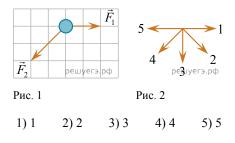
1. Ученик взвесил груз при помощи динамометра (см. рис.). Масса m груза равна:

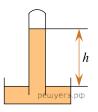


2. На рисунке точками обозначены положения частиц и стрелками показаны скорости их движения в некоторый момент времени. Если все частицы движутся равномерно и прямолинейно, то с частицей A столкнётся частица, обозначенная цифрой: Примечание. Повторные столкновения частиц не рассматривать.

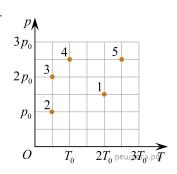


1) 1 2) 2 3) 3 4) 4 5) 5

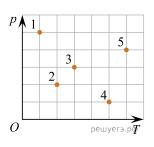

3. Проекция скорости движения тела v_x на ось Ox зависит от времени t согласно закону $v_x = A + Bt$, где A = 8 м/с, B = 4 м/с². Этой зависимости соответствует график (см. рис.), обозначенный буквой:


4. Кинематический закон движения материальной точки вдоль оси Ox имеет вид: $x(t) = 8 + 2t - 3t^2$, где координата x выражена в метрах, а время t — в секундах. Скорость \vec{v} и ускорение \vec{a} материальной точки в момент времени t_0 = 0 с показаны на рисунке, обозначенном цифрой:

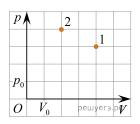
5. К некоторому телу приложены силы $\overrightarrow{F_1}$ и $\overrightarrow{F_2}$, лежащие в плоскости рисунка (см. рис. 1). На рисунке 2 направление ускорения \overrightarrow{a} этого тела обозначено цифрой:



6. Запаянную с одного конца трубку наполнили керосином ($\rho = 820 \, \frac{{
m K}\Gamma}{{
m M}^3}$), а затем погрузили открытым концом в широкий сосуд с керосином (см.рис.). Если высота столба керосина h=12,2 м, то атмосферное давление p равно:


- 1) 99,0 кПа
- 2) 99,5 κΠa
- 3) 100 κΠa
- 4) 101 κΠa
- 5) 102 κΠa

7. На p-T диаграмме изображены различные состояния идеального газа. Состояние с наименьшей концентрацией n_{\min} молекул газа обозначено цифрой:


1) 1 2) 2 3) 3 4) 4 5) 5

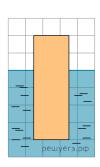
8. На p-T - диаграмме изображены различные состояния одного моля идеального газа. Состояние, соответствующее наименьшему давлению p газа, обозначено цифрой:

1) 1 2) 2 3) 3 4) 4 5) 5

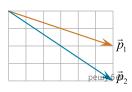
9. Идеальный газ, количество вещества которого постоянно, перевели из состояния 1 в состояние 2 (см. рис.). Если в состоянии 1 температура газа $T_1 = 480$ K, то в состоянии 2 температура газа T_2 равна:

1) 320 K 2) 360 K 3) 640 K 4) 720 K 5) 960 K

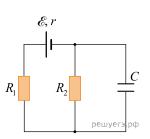
10. Установите соответствие между прибором и физической величиной, которую он измеряет:

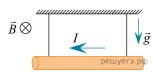

А. Амперметр	1) сила тока
Б. Барометр	2) электрическое напряжение
	3) атмосферное давление

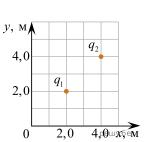
1) A162 2) A163 3) A261 4) A263 5) A362

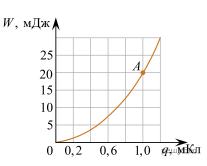

11. В баллон при постоянной температуре закачивают воздух насосом, вместимость камеры которого $V_0=28,0~{\rm cm}^3$. Начальное давление в баллоне было равно атмосферному давлению $p_0=100~{\rm k}\Pi a$. Если после совершения $n=30~{\rm k}$ качаний давление в баллоне стало $p=300~{\rm k}\Pi a$, то вместимость V баллона равна ... ${\rm cm}^3$.

12. Кинематические законы движения двух материальных точек, движущихся вдоль оси Ox, имеют вид $x_1=A_1+B_1t$, $x_2=A_2+B_2t$, где $A_1=-30$ м, $B_1=27$ $\frac{\rm M}{\rm C}$, $A_2=22$ м, $B_2=-12$ $\frac{\rm M}{\rm C}$. Модуль скорости одной материальной точки относительно другой равен ... $\frac{\rm M}{\rm C}$.


13. Цилиндр плавает в воде $ho_{\rm B}=1000~{{\rm K\Gamma}\over{{
m M}^3}}$ в вертикальном положении (см.рис.). Если масса цилиндра m=10 кг, то объем V цилиндра равен ... дм³.


- **14.** Два тела массами $m_1 = 6,00$ кг и $m_2 = 8,00$ кг, модули скоростей которых одинаковы ($v_1 = v_2$), двигались по гладкой горизонтальной поверхности во взаимно перпендикулярных направлениях. Если после столкновения тела движутся как единое целое со скоростью, модуль которой u = 10,0 м/с, то количество теплоты Q, выделившееся при столкновении, равно ... Дж.
- **15.** Камень бросили горизонтально. В момент времени $t_1=1,0$ с импульс камня был \vec{p}_1 , а в момент времени $t_2=2,0$ с импульс камня стал \vec{p}_2 (см. рис.). В момент броска ($t_0=0$ с) модуль начальной скорости v_0 камня был равен ... $\frac{\rm M}{2}$.

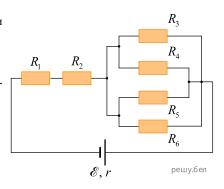

- **16.** Вода $\left(\rho=1,0\cdot10^3\ \frac{\mathrm{K}\Gamma}{\mathrm{M}^3},c=4,2\cdot10^3\ \frac{\mathrm{Дж}}{\mathrm{K}\Gamma\cdot\mathrm{K}}\right)$ объемом $V=250\ \mathrm{cm}^3$ остывает от температуры $t_1=98^\circ\mathrm{C}$ до температуры $t_2=78^\circ\mathrm{C}$. Если количество теплоты, выделившееся при охлаждении воды, полностью преобразовать в работу по поднятию строительных материалов, то на высоту $h=60\ \mathrm{M}$ можно поднять материалы, максимальная масса m которых равна ... кг.
- 17. Цилиндрический сосуд с идеальным одноатомным газом, закрытый невесомым легкоподвижным поршнем с площадью поперечного сечения $S=200~{\rm cm}^2$, находится в воздухе, давление которого $p_0=100~{\rm k}$ Па. Когда газу медленно сообщили некоторое количество теплоты, его внутренняя энергия увеличилась на $\Delta U=600~{\rm Дж}$, а поршень сместился на расстояние l, равное ... мм.
- **18.** Из ядерного реактора извлекли образец, содержащий радиоактивный изотоп с периодом полураспада $T_{1/2}=8.0$ суток. Если в течение промежутка времени Δt масса этого изотопа в образце уменьшилась от $m_0=96$ мг до m=24 мг, то длительность промежутка времени Δt составила ... **сутки(-ок)**.
- **19.** Электрическая цепь состоит из источника постоянного тока, конденсатора ёмкостью C=6,0 мкФ и двух резисторов, сопротивления которых $R_1=R_2=6,0$ Ом (см. рис.). Если внутреннее сопротивление источника r=2,0 Ом, а заряд конденсатора q=180 мкКл, то ЭДС источника тока $\mathscr E$ равна ... **B**.


20. В однородном магнитном поле, модуль магнитной индукции которого B=0,4 Тл, на двух невесомых нерастяжимых нитях подвешен в горизонтальном положении прямой проводник длиной l=0,5 м (см.рис.). Линии индукции магнитного поля горизонтальны и перпендикулярны проводнику. После того как по проводнику пошёл ток, модуль силы натяжения $F_{\rm H}$ каждой нити увеличился в три раза. Если масса проводника m=20 г, то сила тока I в проводнике равна ... **A**.

- **21.** В идеальном колебательном контуре происходят свободные электромагнитные колебания. Амплитудное значение напряжения на конденсаторе $U_0 = 1,9$ В, а амплитудное значение силы тока в контуре $I_0 = 30$ мА. Если электроёмкость конденсатора C = 0,25 мк Φ , то частота v колебаний в контуре равна ... к Γ ц.
- **22.** На дифракционную решетку падает нормально параллельный пучок монохроматического света длиной волны $\lambda=625$ нм. Если максимум четвертого порядка отклонен от перпендикуляра к решетке на угол $\theta=30,0^{\circ}$, то каждый миллиметр решетки содержит число N штрихов, равное
- **23.** Электростатическое поле в вакууме создано двумя точечными зарядами $q_1 = 24$ нКл и $q_2 = -32$ нКл (см. рис.), лежащими в координатной плоскости xOy. Модуль напряжённости E результирующего электростатического поля в начале координат равен ... $\frac{B}{M}$.

24. График зависимости энергии электростатического поля W конденсатора от его заряда q представлен на рисунке. Точке A на графике соответствует напряжение U на конденсаторе, равное ... В.

25. Сила тока в резисторе сопротивлением R=16 Ом зависит от времени t по закону I(t)=B+Ct, где B=6,0 А, C=-0,50 $\frac{\mathrm{A}}{\mathrm{c}}$. В момент времени $t_1=10$ с тепловая мощность P, выделяемая в резисторе, равна ... Вт.

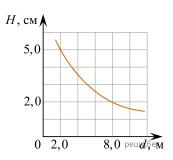

26. Резистор сопротивлением R=10 Ом подключён к источнику тока с ЭДС $\mathcal E=13$ В и внутренним сопротивлением r=3,0 Ом. Работа электрического тока A на внешнем участке электрической цепи, совершённая за промежуток времени $\Delta t=9,0$ с, равна ... Дж.

27.

На рисунке изображена схема электрической цепи, состоящей из источника тока и шести одинаковых резисторов

$$R_1 = R_2 = R_3 = R_4 = R_5 = R_6 = 10,0 \text{ Om.}$$

В резисторе R_6 выделяется тепловая мощность $P_6=90{,}0$ Вт. Если внутреннее сопротивление источника тока $r=4{,}00$ Ом, то ЭДС $\mathcal E$ источника тока равна ... В.


28. Электрон, модуль скорости которого $\upsilon = 1,0\cdot 10^6~\frac{\rm M}{c}$, движется по окружности в однородном магнитном поле. Если на электрон действует сила Лоренца, модуль которой $F_\Pi = 6,4\cdot 10^{-15}~{\rm H}$, то модуль индукции B магнитного поля равен ... мТл.

29. В идеальном колебательном контуре, состоящем из конденсатора и катушки, индуктивность которой L=0.20 мГн, происходят свободные электромагнитные колебания. Если циклическая частота электромагнитных колебаний $\omega=1.0\cdot 10^4 \, \frac{\mathrm{pag}}{\mathrm{c}}$, то ёмкость C конденсатора равна ... мк Φ .

30

График зависимости высоты H изображения карандаша, полученного с помощью тонкой рассеивающей линзы, от расстояния d между линзой и карандашом показан на рисунке. Модуль фокусного расстояния |F| рассеивающей линзы равен ... дм.

Примечание. Карандаш расположен перпендикулярно главной оптической оси линзы.

